Showing posts with label the. Show all posts
Showing posts with label the. Show all posts

Thursday, 23 October 2014

Technology Spending Limits and the Auto Sound System

We live in a world that is constantly changing and evolving. We see it every time we buy a new car, a new television, or a new computer. We see it every other month when the iPod is putting out a new an improved model that offers more features, more disk space, and more everything, in a smaller package (well not since they added video but until then, the gadgets were getting smaller while the features were growing exponentially). The truth of the matter is that technology seems to be advancing at a rate that is nearly impossible to keep up with. That being said, you can quite literally drive yourself insane by trying to keep up with the pace of modern technology.

What you need to do in order to maintain proper sanity is decide on a level of technology that you are comfortable and confident with and go with it until it is time (by either necessity or desire) to upgrade. You do not have to be the first to purchase the latest and greatest in software and gadgetry (this has become my mantra: I do not have to be the first to own the great big bad new toy, I will survive gadget deprivation-it isnt working yet but Im ever the optimist). The point is that you do not need to be the first to try every new thing and you will not only wear yourself out by trying but also you bank account, credit cards, and second mortgage. Technology is expensive, especially the newest and latest. If there was any doubt stroll on over to Ebay and see how much Play Station 3s are selling for at the moment-madness and lunacy do not even begin to subscribe the amount of money people are offering to pay for these devices.

Technology is a wonderful thing. It makes life easier for some and a lot more entertaining for others. The same holds true with auto sound systems. The technology exists to make them much more beneficial to car and driver than they have been in the past while offering many more features than ever before. Today you arent even limited to AM and FM. You now have the option of CDs, audio books, MP3s, XML, and digital FM radio, which offers a few bonus features over traditional radio. It really doesnt matter if you have the absolute latest. Most of us can enjoy a great deal of the wonderful technology that is available if we are willing to wait long enough for the prices to go down. I recall, and it wasnt all that long ago, when DVD players sold for no less than $100. You can get them now (about 5 years later) on a regular basis for less than $30. This is only one example of many. PS2s were around $400 when they first hit the market and now can be bought at the whopping price of $120. All around us technology evolves and grows and then prices fall.

The point is spend your money where you want to spend it rather than where you think it should be spent. If you want an auto sound system then get the best one that you feel meets your budget requirements. You do not have to have the top system in the technology food chain in order to have a great sound system that will provide you with years worth of enjoyment. You are the only one that is responsible for the decisions you make. It is up to you to decide where you want the bulk of your money invested when it comes to technological gadgets and goodies. Believe me, Im a gadget geek. I love playing with new toys and gizmos and seeing how they work-really, for me its a thrill. At the same time I realize I cant always be the first to get the new toys I so desperately want to try out so I limit myself and decide which ones are the most important. You must do this for yourself when it comes to auto sound systems.

Wednesday, 22 October 2014

Basic Principles of the LC resonance circuit

If so far you are still confused how the actual origin of the resonance between the capacitor and the inductor is in progress, then the simple circuit above will answer your confusion.


Basic

By understanding a simple electrical circuit above hopefully we will be able to understand the working principle of a series of more complicated and complex that uses the relationship as a series inductor and capacitors transmitter and receiver.

Note the picture above, when the switch SW1 is pressed and released back then obtained by the same signal as in the picture above signal. Initially when SW1 is connected to the voltage supply, the capacitor will make filling fast. Then when SW1 is released charge on the capacitor will be used by the inductor as the supply voltage. In accordance with the general nature of the inductor that the DC signal will be considered ordinary wire inductor such that current flowing quickly through the inductor and the charge on the capacitor decreases rapidly exhausted. Uniquely current that was flowing through the inductor and capacitor will fill the empty capacitor back through the other terminal (negative cycle). Charging kapasior place quickly, then inductor will burden the back so that emptying of cargo going back. That so happens repeatedly (resonance occurs between L and C) until the electrical charge had been used up by these two components in the form of power losses. Equations between regular wire inductor is the inductor with wire work as usual at the time of current flowing to him. Inductors But unlike ordinary wire when current flows to him and vice versa. So it will not happen short circuit if the inductor to get the supply voltage alternating current (AC). But in ordinary wire short circuit will still occur even if the voltage of alternating current.

From the above analysis we can conclude that the LC resonance occurs because one component part affected by the characteristics of other components. For frequencies generated depend on the value of L and C itself. The greater the value of both the frequency will be smaller and smaller the value of both the frequency value will be even greater.

Thursday, 9 October 2014

88 108 MHz Voltage Controlled Oscilator for PLL Controller This Circuit will explain the PLL unit and the VCO Voltage Controlled Oscillator which w

88-108 MHz Voltage Controlled Oscilator for PLL Controller

This Circuit will explain the PLL unit and the VCO (Voltage Controlled Oscillator) which will create the FM modulated RF signal up to 400mW. the schematic to follow my function description. The main oscillator is based around the transistor Q1. This oscillator is called Colpitts oscillator and it is voltage controlled to achieve FM frequency modulation) and PLL control.


Q1 should be a HF transistor to work well, but in this case I have used a cheap and common BC817 transistor which works great. The oscillator needs a LC tank to oscillate properly. In this case the LC tank consist of L1 with the varicap D1 and the two capacitor (C4, C5) at the base-emitter of the transistor. The value of C1 will set the VCO range.

The large value of C1 the wider will the VCO range be. Since the capacitance of the varicap (D1) is dependent of the voltage over it, the capacitance will change with changed voltage. When the voltage change, so will the oscillating frequency. In this way you achieve a VCO function. You can use many different varicap diod to get it working. In my case I use a varicap (SMV1251) which has a wide range 3-55pF to secure the VCO range (88 to 108MHz).

Inside the dashed blue box you will find the audio modulation unit. This unit also include a second varicap (D2). This varicap is biased with a DC voltage about 3-4 volt DC. This varcap is also included in the LC tank by a capacitor (C2) of 3.3pF. The input audio will passes the capacitor (C15) and be added to the DC voltage. Since the input audio voltage change in amplitude, the total voltage over the varicap (D2) will also change. As an effect of this the capacitance will change and so will the LC tank frequency.

You have a Frequency Modulation of the carrier signal. The modulation depth is set by the input amplitude. The signal should be around 1Vpp. Just connect the audio to negative side of C15. Now you wonder why I dont use the first varicap (D1) to modulate the signal? I could do that if the frequency would be fixed, but in this project the frequency range is 88 to 108MHz.

If you look at the varicap curve to the left of the schematic. You can easily see that the relative capacitance change more at lower voltage than it does at higher voltage. Imagine I use an audio signal with constant amplitude. If I would modulated the (D1) varicap with this amplitude the modulation depth would differ depending on the voltage over the varicap (D1). Remember that the voltage over varicap (D1) is about 0V at 88MHz and +5V at 108MHz. By use two varicap (D1) and (D2) I get the same modulation depth from 88 to 108MHz.

Now, look at the right of the LMX2322 circuit and you find the reference frequency oscillator VCTCXO. This oscillator is based on a very accurate VCTCXO (Voltage Controlled Temperature controlled Crystal Oscillator) at 16.8MHz. Pin 1 is the calibration input. The voltage here should be 2.5 Volt. The performance of the VCTCXO crystal in this construction is so good that you do not need to make any reference tuning.

A small portion of the VCO energy is feed back to the PLL circuit through resistor (R4) and (C16). The PLL will then use the VCO frequency to regulate the tuning voltage. At pin 5 of LMX2322 you will find a PLL filter to form the (Vtune) which is the regulating voltage of the VCO. The PLL try to regulate the (Vtune) so the VCO oscillator frequency is locked to desired frequency. You will also find the TP (test Point) here.

The last part we havent discussed is the RF power amplifier (Q2). Some energy from the VCO is taped by (C6) to the base of the (Q2). Q2 should be a RF transistor to obtain best RF amplification. To use a BC817 here will work, but not good.

The emitter resistor (R12 and R16) set the current through this transistor and with R12, R16 = 100 ohm and +9V power supply you will easy have 150mW of output power into 50 ohm load. You can lower the resistors (R12, R16) to get high power, but please dont overload this poor transistor, it will be hot and burn up… Current consumption of VCO unit = 60 mA @ 9V.

Printed Circuit Board (PCB.pdf)
This is how the real board should look when you are going to solder the components.
It is a board made for surface mounted components, so the cuppar is on the top layer.

Parts List
100 = R7, R12, R16
330 = R4
1k = R1, R2, R3, R10
3.3k = R11
10k = R5, R6, R14, R17
20k = R13
43k = R9
100k = R8, R15
3.3pF = C2, C16
15pF = C4, C6
22pF = C5
1nF = C1, C3, C8, C17, C22, C23
100nF = C7, C9, C11, C12, C13, C14, C19, C20
2.2uF = C15, C18
220uF = C10, C21
L1 = 3 turns diam 6.5mm (Everything from 6 to 7 mm will work good!)
L2, L3, L4 = 10uH
D1, D2 = SMV1251
Q1 = BC817-25
Q2 = BFG193
X1 = 16.800 MHz VCTCXO Reference oscillator
V1 = 78L05
IC1 = LMX2322